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Abstract 
The "Dual-Mode Haptic Feedback Glove for 
Enhanced Guitar Learning" project combines 
haptic feedback with AI to transform guitar 
learning. The glove delivers real-time tactile 
feedback, offering positive reinforcement for correct 
notes and guidance for errors, which could reduce 
dropout rates among beginners. This paper outlines 
the development process, including the ROS/Gazebo 
setup and the creation of an ML model that assesses 
guitar note accuracy against a pentatonic note 
database. Utilizing 'Librosa' and 'OpenSmile' for 
feature extraction, the model analyzes audio signals 
transformed into Mel Spectrograms. The model's 
performance, verified using algorithms such as 
KNN, Siamese Networks, CNNs, and XGBOOST, 
focuses on similarity detection across various 
musical elements. 

 

1. Introduction 

Learning to play the guitar is a rewarding yet 
challenging endeavor that many find overwhelming. 
Traditional learning methods can often be 
monotonous and require significant investment of 
time, leading to high attrition rates among beginners. 
Inspired by advanced haptic and robotic systems 
portrayed in popular media and actualized in projects 
like MIT's "Move Me", our project presents a novel 
solution: a dual-mode haptic feedback glove that 
leverages the power of AI to streamline and enhance 
the guitar learning process. This glove is set to 
provide real-time guidance, correcting and 
confirming note execution through tactile sensation, 
thus embedding proper techniques into muscle 
memory more effectively. 

Upon receiving a pentatonic audio track as input, the 
model commences by extracting salient features 
using the 'Librosa' library. These features, which 
include beat patterns, emotional cues from lyrics, 
melodic lines, and harmonic structures, are then 
compared against a curated database of pentatonics to 
identify potential similarities. The process is iterative, 
refining a list of similar scales through successive 
comparisons, thereby offering a granular similarity 

score that underpins the authenticity of the users 
playing. 

The initial phase of the model's development focused 
on a self-composed/played pentatonic scale audio 
track, employing the KNN algorithm for its 
simplicity and effectiveness in establishing a baseline 
similarity assessment. To enrich the model's learning 
process, we adopted Siamese Networks, leveraging 
pairwise data generation for enhanced training 
outcomes despite a limited dataset. Further 
experimentation with CNNs was conducted, leading 
ultimately to the integration of the XGBOOST 
algorithm, which was in hopes to improve the 
accuracy. 

The introduction of this model represents a 
significant step forward in the field of guitar learning. 

2. Background 

This project is underpinned by the challenges faced 
in conventional guitar training methods - their lack of 
interactivity and slow feedback mechanisms. Our 
background research delves into cognitive and motor 
skill learning theories, establishing the need for rapid 
and accurate feedback in skill acquisition. The 
project draws inspiration from existing technologies 
in haptic feedback and artificial intelligence, 
examining their application in educational contexts 
and identifying a gap in real-time, dual-mode 
feedback systems in music education. The following 
explains some key aspects which are crucial for this 
project. 

 
2.1.MFCCs (Mel Frequency Cepstral 

Coefficients)  

MFCCs, or Mel Frequency Cepstral Coefficients, 
represent a critical aspect of audio signal processing, 
especially in speech and music recognition tasks. 
They are grounded in the mel scale, a concept that 
mirrors how the human ear perceives different 
frequencies. By accurately reflecting the phonetic 
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elements of sound, MFCCs are exceptionally useful 
for identifying diverse audio patterns. 

2.2.Grasping the Concept of MFCCs  

MFCCs emerge from transforming the power 
spectrum of an audio signal to fit the mel scale. This 
scale is uniquely designed based on human 
perception, where pitches are deemed equidistant by 
listeners. The method initiates by segmenting the 
audio signal into brief segments, premised on the idea 
that audio signals maintain stable spectral 
characteristics over short spans. For each segment, its 
power spectrum is calculated. Subsequently, this 
spectrum is filtered through the mel filter bank, 
isolating significant vocal tract resonances and 
energy concentrations within the signal. Following 
this, the logarithmic energy of each filter output is 
computed, and a discrete cosine transform (DCT) is 
applied. This sequence culminates in a set of 
coefficients that concisely encapsulate the distinct 
contour of the audio segment. 

2.3.Relevance to our project 

Within our project, MFCCs are pivotal in analyzing 
musical pieces. Their effectiveness lies in capturing 
the distinct timbre of instruments and the subtle 
qualities of different tones, crucial for differentiating 
instrumental compositions. Utilizing these 
coefficients allows our machine learning model to 
identify and compare patterns across various scales of 
the instrument guitar. This capability is instrumental 
in our objective to measure how closely instrumental 
pieces resemble each other, which helps us detect 
whether the user is actually playing the right set of 
scales/notes.  

2.4.Application in the Dual Mode 
Haptic Glove Project 

The integration of MFCCs into our Dual Mode 
Haptic Glove project encompasses a layered method 
to enhance tactile feedback. Initially, MFCCs are 
utilized to map the sonic profile of interactions, 
facilitating a broad spectrum analysis that allows the 
glove to recognize distinct textures and surfaces 
based on their acoustic signatures. This preliminary 
stage acts as a filter, segregating potential tactile 
patterns that the glove can simulate. 

Following the initial phase, a more detailed 
examination is carried out. Here, MFCCs are 
essential in refining the haptic glove's ability to 

reproduce textures with higher fidelity. By analyzing 
the similarity scores of the MFCCs, the glove's 
feedback mechanisms are fine-tuned to replicate the 
nuances of different materials and surfaces with 
greater accuracy. 

fig.1 – Shows Mel Spectrograms of 2 tracks (further explained in 
the Experimental results [Initial Approach] section). 

The utilization of MFCCs is executed through 
advanced signal processing libraries, integrating them 
with other sensory input parameters such as pressure 
variance and surface temperature gradients. This 
combination creates a sophisticated feature set for the 
haptic glove, enabling it to deliver a comprehensive 
and realistic touch experience. With this detailed 
sensory input, the haptic glove is not only a tool for 
interaction but also becomes an advanced system for 
perceiving the subtleties of our physical world, 
providing users with a more immersive and tactilely 
rich experience. 

Initially, the system leverages MFCCs for a general 
analysis across a collection of sound data, 
pinpointing potential matches by evaluating timbre 
and harmonic features. This initial screening 
produces a group of sounds that exhibit acoustic 
qualities similar to the sample input. In the following 
stage, a thorough investigation is performed on this 
curated selection. Here, MFCCs are crucial in 
determining a similarity index, thus providing a more 
exact measure of the acoustic likeness. 

The process of extracting and applying MFCCs is 
executed through the 'Librosa' library, renowned for 
its precise and efficient computation of these 
coefficients. Our model integrates the extracted 
MFCCs with additional features such as harmony, 
melody and many more in order to formulate a 
comprehensive audio feature set that feeds into the 



machine learning algorithms. Through this 
multifaceted feature analysis, the model aspires to 
provide aspiring guitar learners with an objective 
assessment based on their playing style. 

2.5.ROS/Gazebo Integration 

• Initially, ROS provided the communication 
infrastructure for sensor data processing. 
Gazebo was used for its 3D simulation 
capabilities to prototype haptic interactions. 
However, due to frequent crashes and 
instability, we had to consider alternative 
solutions. 

2.6.Shift to Construct . ai 

• We adopted 'construct.ai' for its stability and 
comprehensive simulation services. This 
web-based platform allowed for continuous 
development cycles and provided a diverse 
range of testing environments without the 
instability issues of ROS/Gazebo. 

2.7.Blender Implementation 

• Utilizing Blender's sophisticated 3D 
modeling tools, we crafted a detailed model 
of the glove. This was crucial for accurate 
positioning of the embedded sensors and 
actuators, ensuring the fidelity of our haptic 
feedback mechanisms in the simulations. 

 

 

Fig 2. Illustrates 3D hand glove we created on Blender. 
(Angle-1) 

 

 

Fig 3. Illustrates 3D hand glove we created on Blender. 
(Angle-2) 

2.8.Architecture and Technicalities 

• Our system architecture incorporates a blend 
of physical sensors in the glove, data 
processing units, and feedback mechanisms. 
Sensor data is transmitted to a processing 
unit, which employs machine learning 
algorithms to interpret the gestures and 
command the haptic feedback actuators 
accordingly. 

3. Related Work (add the links to 
previous work) 

Our research draws from the evolving landscape of 
haptic technology and the rich tapestry of studies that 
contribute to this dynamic field, which intersects the 
spheres of human-computer interaction and tactile 
sensory augmentation. A particularly significant 
project that has impacted our development is MIT's 
"MoveMe," a venture that integrates 3D haptic 
support with expertly pre-recorded movements to 
instruct novices. This endeavor has been instrumental 
in advancing the synchronization of kinesthetic and 
tactile feedback, showcasing the capacity for intricate 
physical interactions to be digitally replicated and 
enhanced. 

The "MoveMe" initiative is not just a reference point 
for our dual mode haptic glove project but also a 
foundation that, while comprehensive, has been 
identified to lack in areas our project targets. 
Notably, it does not incorporate AI-driven 
personalization or the nuanced dual feedback system 
that our proposed model integrates. Our glove design 
aims to blend passive and active haptic feedback to 
create a more immersive user experience in virtual 
environments. Inspired by the dual modes used in 
"MoveMe" to simulate various textures and 
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resistances, we have incorporated these insights into 
the development of our glove's mechanisms. 

In alignment with our literature review, which 
emphasizes the potential of machine learning to 
create adaptive and personalized learning 
environments, our project extends beyond "MoveMe" 
by leveraging AI to tailor the haptic learning 
experience to individual users. Through this 
approach, the glove not only simulates touch and 
provides force feedback but also adapts in real-time 
to the user’s interactions. 

Other works in the field, including those employing 
vibrotactile feedback and proprioceptive illusions, 
have also informed our approach, particularly in fine-
tuning tactile sensations and understanding cognitive 
aspects of touch. This knowledge has been pivotal in 
designing our glove with advanced textile sensors 
and actuators. 

By integrating machine learning algorithms, our dual 
mode haptic glove not only responds with enhanced 
sensitivity but also learns and adjusts to complex 
tactile stimuli, ensuring a high-fidelity haptic 
experience. This project not only compares favorably 
with systems like "MoveMe" but also innovates by 
adding a layer of machine learning-driven 
adaptability. As we forge ahead, we endeavor to 
enrich the corpus of knowledge in haptic technology, 
furthering the capabilities of touch-based interactions 
and underscoring the transformative influence of the 
"MoveMe" project on our work. 

4. Operating System Selection 

Ubuntu 20.04 LTS: A Foundation for Stability 
Our project necessitates a reliable and secure 
operating system, which led us to select Ubuntu 
20.04 LTS (Focal Fossa). Its robustness and extended 
support period make it an ideal choice for complex 
robotics projects requiring a long-term stable 
platform. 

5. Robotics Software Framework 

Integration of ROS Noetic Ninjemys - To facilitate 
our robotics development, we integrated the Robot 
Operating System (ROS) Noetic Ninjemys. As the 
last ROS 1 version compatible with Ubuntu 20.04, it 
brings a wealth of robotics software frameworks to 
our development toolkit. 

 

6. Installation Process 

Setting Up the ROS Repository - The project's 
initial setup involved configuring Ubuntu to 
recognize the ROS repository, ensuring access to a 
wide array of up-to-date ROS packages. This was 
meticulously achieved by adding the repository to 
Ubuntu's sources list and securely importing the ROS 
repository's authentication keys. 

Refreshing the System - A system-wide update 
followed, refreshing the package index. This step was 
crucial for maintaining access to the latest software 
releases and ensuring compatibility with our 
development requirements. 

Choosing the Right ROS Package - For 
comprehensive support in our robotics venture, we 
selected the full desktop version of ROS Noetic. This 
package not only includes core ROS functionalities 
but also additional tools such as Gazebo for 
simulation, Rviz for visualization, and various 
libraries, expanding our project's capabilities from 
simulation to real-world deployment. 

7. Development Environment 
Optimization 

Automating ROS Variables - To streamline our 
development operations, we automated the inclusion 
of ROS environment variables into every new shell 
session, enhancing accessibility to ROS's vast toolset 
and packages. 

8. Managing Package Dependencies 

Ensuring Smooth Package Builds- The final phase 
of our setup focused on dependency management. 
We installed Python-based tools for efficient package 
handling and initiated rosdep, a key tool for installing 
system dependencies required by ROS packages. By 
updating rosdep's package database, we secured a 
seamless and streamlined development process for 
our robotics project. 
?9 

9. Experimental Setup & Evaluation  
 



9.1. Virtual Glove and Guitar String 
Simulation (ROS/ GAZEBO 
Experiments) 

9.1.1. Model Creation and Simulation in 
Gazebo 

To initiate the simulation process, we tried our hand 
at designing simplistic yet functional 3D models 
representing the hand's motion and a guitar string. 
Using Blender and sourcing from the 3D Warehouse, 
we tried to developed models that could be integrated 
into Gazebo for advanced interaction simulations. 
Hypothetically our aim was to program the 3D hand 
model to simulate basic strumming and picking 
actions associated with guitar play, while the string 
model vibrated or moved in response, emulating the 
reaction of a real guitar string being strummed. 

9.1.2. Exporting and Testing the Models 

Further our procedure included the aspect of 
exporting the created models as .dae or .sdf files, 
suitable for Gazebo, ensuring that both the physical 
and visual properties were accurately reflected in the 
simulation environment. Next step was to ensure our 
models responded correctly to simulated physical 
interactions, effectively representing the tactile 
feedback that would be provided by the dual mode 
haptic glove. 

9.1.3. System Integration & Architecture 

Glove Interface Development and Sensor 
Integration  

Our development process involved embedding the 
following sensors :- 

• flex sensors,  
• accelerometers  
• gyroscopes.  

These sensors were tasked with detecting finger 
movements, hand speed, and orientation, 
transforming raw data into actionable inputs for our 
decision-making unit. 

9.1.4. Haptic Feedback Control System 
Evaluation 

Our glove incorporated vibration motors that 
provided real-time feedback based on the processing 
unit's analysis. Users could switch between passive 

and active feedback modes, enabling a 
comprehensive evaluation of the glove's effectiveness 
in various simulated environments. The control logic 
embedded within the microcontroller's firmware 
interpreted commands from the decision-making unit 
and managed the haptic feedback accordingly. 

9.1.5. Decision-Making Unit and Note 
Detection  

(Machine learning Model Experiments) 

The microcontroller, acting as the intermediary, 
gathered the sensor data and interfaced with a ROS2 
system for further processing. 

Stage-1 :- Before we jump into using a reinforcement 
learning model, we need to first use basic supervised 
learning models in order to setup a foundation for the 
purpose of clear understanding of the scales and 
sounds of the guitar pentatonics. 

Stage-2 :- A dedicated processing unit ideally should 
be running a reinforcement learning model which 
theoretically evaluates the data against pre-recorded 
strumming patterns and chords to ascertain the 
accuracy of the user’s guitar playing in real-time.  

 

9.2.Supervised Learning model 
exploration 

For the sake of simplicity, we first decided to go with 
basic audio recordings of the “A” scale pentatonics 
which were self-played and recorded in order to 
perform analysis. 
 
The effectiveness of the machine learning model for 
pentatonic notes similarity detection was evaluated 
through a series of experiments. The model's 
performance was measured based on its ability to 
accurately identify and quantify similarities 
between a test track and a database of pentatonic 
scale recordings, considering various audio 
features, including rhythm, melody, and harmony. 
 

9.2.1. Initial Trial (Approach-1) 
 

The initial phase of our project was devoted 
to the comparative analysis of two distinct 
musical pieces: 'Actual_pentatonic' which 
was found on souncloud scale dataset [], and 



'My_Pentatonic', which was an original 
recording personally played by us inspired 
by the former. It is important to mention that 
we deliberately played one note wrong in the 
recording to check for difference detection. 
Our goal was to establish a systematic 
framework for detecting similarities between 
these two pieces using various audio signal 
processing techniques and similarity 
measures. 

9.2.2. Feature Extraction and Preprocessing 
 

Utilizing the Librosa library, a 
comprehensive suite of features was 
extracted from each song. This included the 
extraction of pitches and magnitudes via 
Librosa's piptrack function, which facilitated 
the construction of a notes pattern for each 
track. Chord progression patterns were 
derived from chroma features, and the tempo 
patterns were determined through Librosa's 
beat tracking algorithms. Additionally, the 
Root Mean Square Energy (RMSE) was 
calculated to evaluate the use of silence and 
space within the compositions. 

9.2.3. Similarity Measurement Techniques 
 

Our approach to measuring similarity was 
multi-faceted. We employed cosine 
similarity to compare chord progression 
patterns and tempo directly, while Dynamic 
Time Warping (DTW) was used for notes 
and beats patterns to account for temporal 
shifts and variations in the musical phrasing. 
The DTW algorithm was particularly suited 
for this task as it allowed for a flexible 
comparison of sequences that may vary in 
time or speed. 
 

 
 

Fig.4 – Shows the code snippet and Similarity scores 
obtained. Down below the scores are explained. 

 
v Notes Pattern Similarity: 243801568858003e-

07 
Ø This score, which is very close to 0, 

indicates a very low similarity in the notes 
patterns between the two audio tracks 
implying that the sequences of notes or 
pitches in comparison are quite different 
from each other. 

v Chord Progression Similarity: 
854832410812377 
Ø A similarity score of approximately 0.855 

suggests a high level of resemblance in the 
chord progressions of the audio tracks. This 
means that the way chords change and 
progress over time in both tracks is quite 
similar, which could contribute to them 
having a comparable harmonic structure. 

v Use of Silence and Space Similarity: 1 
Ø A score of 1 denotes perfect similarity. This 

suggests that the use of silence (quiet parts) 
and space (perhaps the distribution of sound 
and silence) in the two tracks are extremely 
similar, if not identical. 

v Tempo Similarity: 1 
Ø Another perfect score of 1 indicates that the 

tempo (speed or pace) of the two tracks is 
the same. This means that both tracks are 
played at an identical number of beats per 
minute (BPM). 
 

v Timbre Analysis 
 
To capture the characteristic sound quality or 'colour' 
of the music, Mel Frequency Cepstral Coefficients 
(MFCCs) were computed. The MFCCs provided a 
representation of the short- term power spectrum of 
the sound and served as a proxy for timbral texture. 
The mean of the MFCCs across time was used to 
summarize the overall timbral features of each track. 
 

 
Fig.5 – Shows the code snippet and Timbre Similarity score 

obtained. Down below the score is explained in detail. 

 
• High Timbre Similarity: A similarity 

score of approximately 0.950 is quite high, 
indicating that the timbre of the two tracks 
is very similar. Timbre, often referred to as 
the "color" or "quality" of sound, 
encompasses the characteristics that 
distinguish different sounds from each 



other even when they have the same pitch 
and loudness. It is influenced by factors 
such as the uniqueness of the guitarist, the 
recording environment, and the processing 
effects applied. 

• Interpretation: This high score 
suggests that the sounds in both 
tracks have similar qualities. For 
example, if both the pentatonics 
have similar characteristics, this 
would be reflected in a high timbre 
similarity score. This could mean 
the tracks share similar sound 
textures, instrumentation qualities, 
which is exactly what we wanted to 
achieve since we already knew by 
the sound of the tracks that they are 
both almost similar. 

 
In simple terms, a timbre similarity score of 
0.950 indicates that, to the human ear, the 
two tracks would sound quite similar in 
terms of the quality and character of their 
sounds. This is a significant aspect of music 
similarity, as it contributes to the overall 
perception and feel of a song. 

9.2.4. Visualization of Audio Features 
 
Mel spectrograms were generated for both 
tracks, offering a visual representation of the 
spectral energy across frequencies over time. 
These spectrograms were converted to a 
logarithmic scale (dB) and displayed to 
facilitate a qualitative assessment of the 
similarity in energy distribution between the 
tracks. (Refer to Fig- *) 

9.2.5. Melodic Contour Extraction 
 
To address the melodic aspect, we extracted 
the pitch sequences from each track, 
normalized them to account for variations in 
key or octave, and plotted the melodic 
contours. This normalization process was 
critical in ensuring that the pitch comparison 
focused on the shape of the melody, rather 
than absolute frequency values, which could 
differ due to transposition. 
 

 
Fig.6 – Melodic Contours help in detecting similarity visually. 

9.2.6.   Results and Discussion 
 
The experimental results yielded several key 
insights into the similarity between 
'Actual_pentatonic' and 'My_Pentatonic'. 
The cosine similarity scores for chord 
progression and tempo provided a 
quantitative measure of the structural and 
rhythmic similarity. Meanwhile, the DTW-
based similarity scores for notes and patterns 
offered an understanding of the alignment 
and flow of the musical elements over time. 
 
The timbre similarity, as quantified by the 
comparison of MFCCs, indicated a closer match in 
the overall sound quality, corroborating the 
subjective inspiration drawn from 
'Actual_pentatonic' in the creation of 
'My_pentatonic'. The visual analysis through 
spectrograms and the plotted melodic contours 
provided further evidence of the resemblance in the 
spectral and melodic content of the tracks. 

 
This multifaceted approach, grounded in signal 
processing and machine learning concepts rather 
than a single algorithm, allowed for a nuanced and 
detailed comparison, highlighting both overt and 
subtle similarities across various musical 
dimensions. 

9.3. Second Trail (Approach-2) 
 
To enhance the scope of our pentatonic similarity 
detection, we acquired a guitar lessosn dataset 
found on soundcloud with perceived similar 
characteristics, designated as the training set, and 3 
distinct custom recorded guitar pentatonics for 
testing. The objective was to refine our model's 



ability to discern nuanced similarities within a 
larger and more diverse corpus of music. 

9.3.1. Data Acquisition and Preprocessing 
 
The audio data for both the training and test sets 
were sourced manually and preprocessed using 
Librosa. This process involved loading each track 
with a consistent sampling rate and duration, 
padding tracks shorter than the desired 60 seconds 
to maintain uniformity across the dataset. 

 
9.3.2.   Feature Extraction 

 
For each track, we extracted a variety of features to 
capture different musical aspects. This included 
Mel-frequency cepstral coefficients (MFCCs) to 
represent timbre, spectral centroids to reflect the 
center of mass of the sound spectrum, chroma 
features to encapsulate harmonic content, and 
spectral contrast to capture the dynamic range 
within spectral bands. 

 

OpenSMILE 
 

• OpenSMILE is an open-source software for 
extracting audio features from signal 
streams, widely used in speech and music 
processing, affective computing, and music 
information retrieval 

 
• OpenSMILE comes with a 

comprehensive set of pre-defined 
feature sets that cover various 
domains, including Low-Level 
Descriptor (LLD) features such as 
Mel-frequency cepstral coefficients 
(MFCCs), pitch, and energy, as well 
as higher- level statistical functionals 
computed over the LLDs. This 
design allows for the extraction of 
both frame-level features and 
segment-level statistics, offering a 
rich representation of the audio 
content. 

Extracting MFCCs with OpenSMILE 

 

Fig.7 – Shows an example of the code snippet from one 
of the song samples used and its MFCC features 
extracted. 

9.3.3.   Pairwise Data Generation 
 

With the extracted features, we constructed 
pairwise comparisons between all possible 
audio pairs within the training set. These 
pairs were labeled based on a predefined 
grouping of tracks sharing similar tempo, 
baselines, or overall feel, with the aim of 
teaching our model to recognize both 
obvious and subtle similarities. 
 

Fig.8 – Shows the pairwise data generated 
 

9.3.4.  Model Training 
 

The convolutional neural network (CNN) 
architecture was chosen for its prowess in 



handling the spatial hierarchy of features. 
Our model included multiple convolutional 
layers, dropout for regularization, and dense 
layers for pattern recognition. The final 
output layer employed a sigmoid activation 
function to yield a binary indication of 
similarity. 

 
Fig.9 – Model Architecture (Before corrections were made 
eventually) 
 

9.3.5. Training Procedure 
 
The model was trained on the generated pairwise 
data over 10 epochs with a batch size of 16. The 
training involved a binary cross-entropy loss 
function optimized with the Adam optimizer, a 
choice driven by the binary nature of our similarity 
detection task. 

9.3.6.    Testing and Evaluation 
 
Post-training, we conducted evaluations using the 
test set. Each test track was preprocessed, features 
were extracted, and the data was reshaped to 
conform to the input requirements of our CNN. 
Predictions were generated, and a threshold was set 
to categorize pentatonics as similar or not based on 
the model's output. 

9.3.7.   Results and Discussion 
 
The trained model was able to predict similarities 
with varying scores, allowing us to discern which 
test tracks shared significant musical traits with the 
training set. The use of a CNN to process the 
detailed feature set demonstrated an innovative 
application of image recognition techniques in an 

auditory context. 
 
The predictive scores offered insights into 
the underlying similarities across the test 
tracks, validating the effectiveness of our 
feature extraction and machine learning 
approach. While the results showed promise, 
the subjective nature of music similarity and 
the intricacies of personal interpretation 
suggest a need for further fine-tuning 
and potentially incorporating additional 
features or alternative models for improved 
accuracy. 

10. DISCOVERY OF LIMITATIONS  

In the course of developing our dual mode haptic 
glove, we have encountered various challenges that 
have served to both temper our expectations and 
refine our approach. The following points outline the 
limitations encountered: 

10.1. Lack of a Perfect Dataset 

The specificity of guitar pentatonic scales requires a 
dataset that is both comprehensive and nuanced. The 
absence of such a dataset poses a significant hurdle, 
as it impacts the machine learning model's ability to 
accurately learn and predict the wide range of 
possible note combinations and variations that a 
guitarist can produce. 

10.2. ROS2-Gazebo Integration Issues 

Interfacing ROS2 with Gazebo for simulation 
purposes has not been without issues. Random 
crashes during simulations have disrupted the 
workflow, presenting an obstacle to continuous 
development and testing. 

10.3. Complexity of Sound Analysis 

The task of accurately recognizing and classifying 
complex guitar notes is intricate, involving detailed 
audio processing that becomes increasingly 
challenging with the subtleties of pentatonic scales 
played with different styles and techniques. The 
complexity lies in distinguishing the correct from 
incorrect notes, which is further complicated by 
individualistic playing styles, where variations in 
plucking, strumming, and fingerstyle techniques are 
prevalent. 



10.4. Variability in Playing Style 

Guitar playing is a highly individualistic endeavor. 
Each musician brings a unique touch to their 
instrument, influencing the way notes and chords are 
played. This variability makes it challenging to create 
a one-size-fits-all model that accurately captures and 
responds to the nuances of individual playing styles. 

10.5. Sensor Sensitivity and Precision 

Our project's success hinges on the precision of 
sensors to detect fine movements and pressure 
changes. Current off-the-shelf sensor technology may 
not always meet the high level of sensitivity required 
for nuanced musical tasks, leading to potential 
inaccuracies in feedback. 

10.6. Latency Issues 

The interactive nature of our glove demands near-
instantaneous feedback to be effective. Any 
noticeable delay between playing a note and 
receiving feedback can disrupt the learning and 
playing experience. Achieving low latency is crucial 
and is affected by both hardware limitations and 
software efficiency. 

10.7. Algorithmic Bias and Overfitting 

Machine learning models, particularly those 
involving reinforcement learning, can develop biases 
based on the training data. This predisposition can 
lead to overfitting, where the model performs well on 
training data but fails to generalize to new, unseen 
data. 

10.8. User Adaptability 

The diversity in users' responses to haptic feedback 
poses another challenge. Personalizing the system to 
optimize learning for each individual is complex and 
requires not only a dataset that encapsulates the full 
range of possible interactions but also sophisticated 
algorithms capable of adapting to user feedback. 

10.9. Data Annotation Challenges 

Creating a perfect dataset necessitates accurate 
labeling. The manual process of annotating audio 
data with correct and incorrect plays is labor-
intensive and prone to human error. This can 
introduce inaccuracies in the data, which in turn 

affect the training and performance of the machine 
learning model. 

These limitations, while presenting significant 
challenges, also offer avenues for future research and 
development. They underscore the importance of 
continued innovation in haptic technology, machine 
learning, and sensor development to overcome these 
hurdles and improve the fidelity of our dual mode 
haptic glove system. 

11. Results and Discussion 

While the project is theoretical, we predict the 
outcomes through simulated environments and 
hypothesized testing. We envision that the glove will 
yield faster learning times, increased retention rates, 
and greater student engagement compared to 
traditional learning methods. Discussions will include 
potential challenges, such as ensuring the system's 
adaptability to various learning styles and technical 
specifications required to process the musical data 
accurately. 

12. Conclusion 

In conclusion, the "Dual-Mode Haptic Feedback 
Glove for Enhanced Guitar Learning" represents a 
cutting-edge intersection of haptic feedback 
technology and AI-driven educational tools. It stands 
to not only expedite and enrich the guitar learning 
process but also pave the way for future innovations 
in skill-based learning across various disciplines. The 
project holds promise to significantly diminish the 
time it takes to become proficient in guitar, 
potentially disrupting traditional methods and setting 
a new standard in musical pedagogy. 

This theoretical exploration hopes to inspire further 
research and development, leading to tangible 
advancements in the way we approach learning 
complex skills like musical instrument proficient. 

 

 

 

 

 



13. Discussions 

Throughout our journey, we've gleaned the critical 
influence of an extensive, well-curated dataset in the 
intricate realm of music similarity detection. The path 
was challenging, highlighting the need for a generous 
timeline to thoroughly refine our model and move 
closer to a fully-realized prototype. We've learned 
that the richness of the data we feed into our system 
is paramount—it is the difference between surface-
level similarity and deep, nuanced musical analysis. 

Our project's stride could be amplified with the 
expertise of a more diverse team. We aim to 
capitalize on a multiplicity of skills and insights from 
various fields to quicken our progress. By embracing 
an open-source approach and transitioning our 
project to a GitHub repository, we invite the global 
community to contribute, bringing us closer to our 
goal through collective ingenuity. 

Moreover, the cross-disciplinary partnerships would 
be a beacon, shedding light on the immense potential 
we could have by means of collaboration with 
educational, technological and music industry 
domains. These alliances are more than just resource 
pools; they are incubators for groundbreaking ideas 
that could propel us to the forefront of music 
technology. 

This reflective process has been invaluable, teaching 
us that beyond the algorithms and data, the 
collaborative spirit and a multi-faceted approach are 
what will drive innovation in our project and beyond. 

14. Individual Contributions 

Jayanth Suryaprakash - 

• Blender Modeling: Spearheaded the 
creation of the 3D model of the haptic glove 
using Blender, setting the foundation for our 
virtual simulations. 

• Supervised Model (1st approach): 
Developed the initial supervised learning 
model architecture, critical for the project's 
ML component. 

• ROS Noetic Integration: Played a key role 
in the integration of ROS Noetic, in order to 
enhance the robotic simulation capabilities. 

• Construct AI Research: Led the research 
and found out about 'construct.ai', which 
facilitated our transition, ensuring a more 
stable simulation environment. 

• Deciding System Integration and 
Architecture: Took charge in the decisive 
planning of system integration, laying out 
the architecture for our glove which includes 
haptic feedback research. 

• Haptic feedback research – Went through 
multiple papers in order to understand the 
haptic motors better. 

Surya Samarth's Role - 

• MFCC Research: Conducted in-depth 
research into Mel Frequency Cepstral 
Coefficients (MFCCs), which are vital for 
the audio analysis in our ML models. 

• Supervised Learning (2ns approach): 
Developed the second approach which 
involves making use of OpenSMILE and 
Librosa libraries focusing on pattern 
recognition aspect. 

• Data Creation and Processing: Personally 
recorded guitar pentatonics and created a set 
of data to pursue this project. Further, 
managed the processing of the custom made  
datasets, ensuring quality and relevance for 
training the ML models. 

• CNN Architecture: Constructed the 
Convolutional Neural Network (CNN) 
architecture, optimizing it for efficient audio 
signal processing. 

• Audio Libraries Exploration: Found out 
about 'OpenSmile' tool and 'Librosa' library 
which played a vital role for feature 
extraction, significantly contributing to the 
project's audio processing capabilities. 

• Melodic Contour Extraction: Focused on 
extracting melodic contours, a crucial step 
towards achieving accurate similarity 
detection in musical patterns. 

Group Efforts 

• Limitations and Discussions: As a 
collective, we identified and analyzed the 
project's limitations as we steered deep into 
this concept, engaging in comprehensive 
discussions to strategize our future works. 

• ROS/Gazebo Implementation: As a team 
we were instrumental in the ROS/Gazebo 
implementation, contributing to the 
installation and configuration processes. 

• Future Works: Together, we envisioned the 
trajectory of the project, proposing 

http://construct.ai/


extensions in the timeline and collaborations 
that could enrich our project. 

 

15. References  

 

• Move Me (1st link) - 
https://www.media.mit.edu/publications/mo
veme-3d-haptic-support-for-a-musical-
instrument/ 

• Move Me (2nd link) - 
https://www.media.mit.edu/publications/mo
veme-3d-haptic-support-for-a-musical-
instrument/ 

• Opensmile -
https://www.audeering.com/research/opensmi
le/ 

• Blender – 
https://www.blender.org/download/ 
 

• XGBOOST - 
https://www.kaggle.com/code/batuhansenerr/
music 
-recommendation-xgboost-over-90-accuracy 

• MFCCs - 
https://librosa.org/doc/main/generated/librosa
.featur e.mfcc.html 
 

• Haptic Feedback for virtual reality - 
https://www.researchgate.net/publication/23
56993_Haptic_Feedback_for_Virtual_Realit
y 
 

• Design and Evaluation of a wearable 
haptic device paper - 
https://ieeexplore.ieee.org/abstract/docum
ent/8304760 
 
 
 

 
 
 
 
 

https://www.media.mit.edu/publications/moveme-3d-haptic-support-for-a-musical-instrument/
https://www.media.mit.edu/publications/moveme-3d-haptic-support-for-a-musical-instrument/
https://www.media.mit.edu/publications/moveme-3d-haptic-support-for-a-musical-instrument/
https://www.media.mit.edu/publications/moveme-3d-haptic-support-for-a-musical-instrument/
https://www.media.mit.edu/publications/moveme-3d-haptic-support-for-a-musical-instrument/
https://www.media.mit.edu/publications/moveme-3d-haptic-support-for-a-musical-instrument/
https://www.audeering.com/research/opensmile/
https://www.audeering.com/research/opensmile/
https://www.blender.org/download/
https://www.kaggle.com/code/batuhansenerr/music-recommendation-xgboost-over-90-accuracy
https://www.kaggle.com/code/batuhansenerr/music-recommendation-xgboost-over-90-accuracy
https://www.kaggle.com/code/batuhansenerr/music-recommendation-xgboost-over-90-accuracy
https://librosa.org/doc/main/generated/librosa.feature.mfcc.html
https://librosa.org/doc/main/generated/librosa.feature.mfcc.html
https://librosa.org/doc/main/generated/librosa.feature.mfcc.html
https://www.researchgate.net/publication/2356993_Haptic_Feedback_for_Virtual_Reality
https://www.researchgate.net/publication/2356993_Haptic_Feedback_for_Virtual_Reality
https://www.researchgate.net/publication/2356993_Haptic_Feedback_for_Virtual_Reality
https://ieeexplore.ieee.org/abstract/document/8304760
https://ieeexplore.ieee.org/abstract/document/8304760




 
 
 


